Research paper- data center technology | Cloud Computing

Need your ASSIGNMENT done? Use our paper writing service to score better and meet your deadline.

Order a Similar Paper HERE Order a Different Paper HERE

Research Paper:  Find a peer reviewed article in the following databases provided by the UC Library and write a 500-word paper reviewing the literature concerning Data Center Technology. Choose one of the technologies discussed in Chapter 5, Section 5.2 (Erl, 2014). 

Abstract <>

Introduction <>

1- Virtualization — <I prefer this one> provide some flow chat also. 

(Note:- But you can take anyone from 1 to 7)

2- Standardization and Modularity

3- Automation

4- Remote Operation and Management

5- High Availability

6- Security-Aware Design, Operation, and Management

7- Facilities


======This is must

Use the following databases for your research:

· ACM Digital Library

· IEEE/IET Electronic Library

· SAGE Premier



You may choose any scholarly peer reviewed articles and papers.


Section 5.2 <From here we can choose one topic)


Grouping IT resources in close proximity with one another, rather than having them geographically dispersed, allows for

power sharing, higher efficiency in shared IT resource usage, and improved accessibility for IT personnel. These are the

advantages that naturally popularized the data center concept. Modern data centers exist as specialized IT infrastructure

Chapter 5. Cloud-Enabling Technology – Cloud Computing: Concepts, Technology & Architecture[11/15/2017 5:49:24 PM]

used to house centralized IT resources, such as servers, databases, networking and telecommunication devices, and

software systems.

Data centers are typically comprised of the following technologies and components:


Data centers consist of both physical and virtualized IT resources. The physical IT resource layer refers to the facility

infrastructure that houses computing/networking systems and equipment, together with hardware systems and their

operating systems (Figure 5.7). The resource abstraction and control of the virtualization layer is comprised of operational

and management tools that are often based on virtualization platforms that abstract the physical computing and

networking IT resources as virtualized components that are easier to allocate, operate, release, monitor, and control.

Chapter 5. Cloud-Enabling Technology – Cloud Computing: Concepts, Technology & Architecture[11/15/2017 5:49:24 PM]

Figure 5.7. The common components of a data center working together to provide virtualized IT resources

supported by physical IT resources.

Virtualization components are discussed separately in the upcoming Virtualization Technology section.

Standardization and Modularity

Data centers are built upon standardized commodity hardware and designed with modular architectures, aggregating

multiple identical building blocks of facility infrastructure and equipment to support scalability, growth, and speedy

hardware replacements. Modularity and standardization are key requirements for reducing investment and operational

costs as they enable economies of scale for the procurement, acquisition, deployment, operation, and maintenance


Chapter 5. Cloud-Enabling Technology – Cloud Computing: Concepts, Technology & Architecture[11/15/2017 5:49:24 PM]

Common virtualization strategies and the constantly improving capacity and performance of physical devices both favor

IT resource consolidation, since fewer physical components are needed to support complex configurations. Consolidated

IT resources can serve different systems and be shared among different cloud consumers.


Data centers have specialized platforms that automate tasks like provisioning, configuration, patching, and monitoring

without supervision. Advances in data center management platforms and tools leverage autonomic computing

technologies to enable self-configuration and self-recovery. Autonomic computing is briefly discussed in Appendix E.

Remote Operation and Management

Most of the operational and administrative tasks of IT resources in data centers are commanded through the network’s

remote consoles and management systems. Technical personnel are not required to visit the dedicated rooms that house

servers, except to perform highly specific tasks, such as equipment handling and cabling or hardware-level installation

and maintenance.

High Availability

Since any form of data center outage significantly impacts business continuity for the organizations that use their

services, data centers are designed to operate with increasingly higher levels of redundancy to sustain availability. Data

centers usually have redundant, uninterruptable power supplies, cabling, and environmental control subsystems in

anticipation of system failure, along with communication links and clustered hardware for load balancing.

Security-Aware Design, Operation, and Management

Requirements for security, such as physical and logical access controls and data recovery strategies, need to be thorough

and comprehensive for data centers, since they are centralized structures that store and process business data.

Due to the sometimes prohibitive nature of building and operating on-premise data centers, outsourcing data centerbased

IT resources has been a common industry practice for decades. However, the outsourcing models often required

long-term consumer commitment and usually could not provide elasticity, issues that a typical cloud can address via

inherent features, such as ubiquitous access, on-demand provisioning, rapid elasticity, and pay-per-use.


Chapter 5. Cloud-Enabling Technology – Cloud Computing: Concepts, Technology & Architecture[11/15/2017 5:49:24 PM]

Data center facilities are custom-designed locations that are outfitted with specialized computing, storage, and network

equipment. These facilities have several functional layout areas, as well as various power supplies, cabling, and

environmental control stations that regulate heating, ventilation, air conditioning, fire protection, and other related


The site and layout of a given data center facility are typically demarcated into segregated spaces. Appendix D provides a

breakdown of the common rooms and utilities found in data centers.

Computing Hardware

Much of the heavy processing in data centers is often executed by standardized commodity servers that have substantial

computing power and storage capacity. Several computing hardware technologies are integrated into these modular

servers, such as:

• rackmount form factor server design composed of standardized racks with interconnects for power, network, and

internal cooling

• support for different hardware processing architectures, such as x86-32bits, x86-64, and RISC

• a power-efficient multi-core CPU architecture that houses hundreds of processing cores in a space as small as a single

unit of standardized racks

• redundant and hot-swappable components, such as hard disks, power supplies, network interfaces, and storage

controller cards

Computing architectures such as blade server technologies use rack-embedded physical interconnections (blade

enclosures), fabrics (switches), and shared power supply units and cooling fans. The interconnections enhance intercomponent

networking and management while optimizing physical space and power. These systems typically support

individual server hot-swapping, scaling, replacement, and maintenance, which benefits the deployment of fault-tolerant

systems that are based on computer clusters.

Contemporary computing hardware platforms generally support industry-standard and proprietary operational and

management software systems that configure, monitor, and control hardware IT resources from remote management

consoles. With a properly established management console, a single operator can oversee hundreds to thousands of

physical servers, virtual servers, and other IT resources.

Chapter 5. Cloud-Enabling Technology – Cloud Computing: Concepts, Technology & Architecture[11/15/2017 5:49:24 PM]

Storage Hardware

Data centers have specialized storage systems that maintain enormous amounts of digital information in order to fulfill

considerable storage capacity needs. These storage systems are containers housing numerous hard disks that are

organized into arrays.

Storage systems usually involve the following technologies:

Hard Disk Arrays – These arrays inherently divide and replicate data among multiple physical drives, and increase

performance and redundancy by including spare disks. This technology is often implemented using redundant arrays of

independent disks (RAID) schemes, which are typically realized through hardware disk array controllers.

I/O Caching – This is generally performed through hard disk array controllers, which enhance disk access times and

performance by data caching.

Hot-Swappable Hard Disks – These can be safely removed from arrays without requiring prior powering down.

Storage Virtualization – This is realized through the use of virtualized hard disks and storage sharing.

Fast Data Replication Mechanisms – These include snapshotting, which is saving a virtual machine’s memory into a

hypervisor-readable file for future reloading, and volume cloning, which is copying virtual or physical hard disk volumes

and partitions.

Storage systems encompass tertiary redundancies, such as robotized tape libraries, which are used as backup and

recovery systems that typically rely on removable media. This type of system can exist as a networked IT resource or

direct-attached storage (DAS), in which a storage system is directly connected to the computing IT resource using a host

bus adapter (HBA). In the former case, the storage system is connected to one or more IT resources through a network.

Networked storage devices usually fall into one of the following categories:

Storage Area Network (SAN) – Physical data storage media are connected through a dedicated network and provide

block-level data storage access using industry standard protocols, such as the Small Computer System Interface (SCSI).

Network-Attached Storage (NAS) – Hard drive arrays are contained and managed by this dedicated device, which

connects through a network and facilitates access to data using file-centric data access protocols like the Network File

Chapter 5. Cloud-Enabling Technology – Cloud Computing: Concepts, Technology & Architecture[11/15/2017 5:49:24 PM]

System (NFS) or Server Message Block (SMB).

NAS, SAN, and other more advanced storage system options provide fault tolerance in many components through

controller redundancy, cooling redundancy, and hard disk arrays that use RAID storage technology.

Network Hardware

Data centers require extensive network hardware in order to enable multiple levels of connectivity. For a simplified

version of networking infrastructure, the data center is broken down into five network subsystems, followed by a

summary of the most common elements used for their implementation.

Carrier and External Networks Interconnection

A subsystem related to the internetworking infrastructure, this interconnection is usually comprised of backbone routers

that provide routing between external WAN connections and the data center’s LAN, as well as perimeter network security

devices such as firewalls and VPN gateways.

Web-Tier Load Balancing and Acceleration

This subsystem comprises Web acceleration devices, such as XML pre-processors, encryption/decryption appliances, and

layer 7 switching devices that perform content-aware routing.

LAN Fabric

The LAN fabric constitutes the internal LAN and provides high-performance and redundant connectivity for all of the

data center’s network-enabled IT resources. It is often implemented with multiple network switches that facilitate

network communications and operate at speeds of up to ten gigabits per second. These advanced network switches can

also perform several virtualization functions, such as LAN segregation into VLANs, link aggregation, controlled routing

between networks, load balancing, and failover.

SAN Fabric

Related to the implementation of storage area networks (SANs) that provide connectivity between servers and storage

systems, the SAN fabric is usually implemented with Fibre Channel (FC), Fibre Channel over Ethernet (FCoE), and

InfiniBand network switches.

NAS Gateways

This subsystem supplies attachment points for NAS-based storage devices and implements protocol conversion hardware

Chapter 5. Cloud-Enabling Technology – Cloud Computing: Concepts, Technology & Architecture[11/15/2017 5:49:24 PM]

that facilitates data transmission between SAN and NAS devices.

Data center network technologies have operational requirements for scalability and high availability that are fulfilled by

employing redundant and/or fault-tolerant configurations. These five network subsystems improve data center

redundancy and reliability to ensure that they have enough IT resources to maintain a certain level of service even in the

face of multiple failures.

Ultra high-speed network optical links can be used to aggregate individual gigabit-per-second channels into single optical

fibers using multiplexing technologies like dense wavelength-division multiplexing (DWDM). Spread over multiple

locations and used to interconnect server farms, storage systems, and replicated data centers, optical links improve

transfer speeds and resiliency.

Other Considerations

IT hardware is subject to rapid technological obsolescence, with lifecycles that typically last between five to seven years.

The on-going need to replace equipment frequently results in a mix of hardware whose heterogeneity can complicate the

entire data center’s operations and management (although this can be partially mitigated through virtualization).

Security is another major issue when considering the role of the data center and the vast quantities of data contained

within its doors. Even with extensive security precautions in place, housing data exclusively at one data center facility

means much more can be compromised by a successful security incursion than if data was distributed across individual

unlinked components.